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Abstract

We study mixed hitting-time models that specify durations as the first time a

Lévy process— a continuous-time process with stationary and independent increments—

crosses a heterogeneous threshold. Such models of substantial interest because they

can be deduced from optimal-stopping models with heterogeneous agents that do

not naturally produce a mixed proportional hazards structure. We show how strate-

gies for analyzing the identifiability of the mixed proportional hazards model can

be adapted to prove identifiability of a hitting-time model with observed covariates

and unobserved heterogeneity. We discuss inference from censored data and give

examples of structural applications. We conclude by discussing the relative merits

of both models as complementary frameworks for econometric duration analysis.
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1 Introduction

Mixed hitting-time (MHT) models are mixture duration models that specify durations

as the first time a latent stochastic process crosses a heterogeneous threshold. In this

paper, we explore the empirical content of an MHT model in which the latent process is a

spectrally-negative Lévy process, a continuous-time process with stationary and indepen-

dent increments and no positive jumps, and the threshold is multiplicative in the effects

of observed covariates and unobserved heterogeneity. We show that existing strategies

for analyzing the identifiability of Lancaster’s (1979) mixed proportional hazards (MPH)

model can be adapted to prove this model’s identifiability. In particular, we show that

the latent Lévy process, the covariates’ effect on the threshold, and the distribution of

the unobserved heterogeneity in the threshold are uniquely determined by data on du-

rations and covariates. Some assumption on the tails of the heterogeneity distribution

or the latent process is required for full identification. Some conditions for identification

that may or may not be satisfied in the analogous MPH problem here follow from the

Lévy structure and do not require additional assumptions. Finally, multiple-spell data

facilitate identification of much more general models, with arbitrary interactions of the

latent process and unobserved heterogeneity with covariates.

Mixed hitting-time models are of substantial interest because they are closely related

to economic models in which agents optimally time discrete actions, with payoffs driven

by Brownian motion (Dixit and Pindyck, 1994; Stokey, 2009) or a more general Lévy

process (Boyarchenko and Levendorskĭı, 2007; Kyprianou, 2006). Such models’ optimal

decision rules routinely involve thresholds, and heterogeneity in their primitives generates

threshold heterogeneity. In this paper, we develop a range of examples. In the simplest of

these, agents are endowed with an option to invest in a project, at a time of their choice.

Investment incurs a given cost; in return, the agent receives the project’s value at the

time of the investment. The log of this value follows a Brownian motion. At each point

in time, the agent weighs the direct payoffs of investing in the project, net of the amount
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to be invested, against the value of retaining the option of investing later, given the prim-

itive parameters and the history of project values. The agent maximizes his expected

discounted payoffs by investing when the project’s value hits a time-invariant threshold.

Primitive heterogeneity; such as variation in initial project values, investment costs, and

discount rates across agents; induces heterogeneity in the threshold. Consequently, data

on investment times and covariates can be analyzed with an MHT model, and our identi-

fication results show that this yields estimates of the latent process for project values and

the agents’ investment decision rules. These estimates may be of interest by themselves,

or can be used as inputs in a further analysis of the model’s remaining primitives. Similar

results are found for model variants in which the latent process induces a flow of payoffs,

such as wages or profits, and extensions in which the duration of interest is embedded in

a multistate transition model, such as match durations in a search-matching model.

Hitting-time models based on Brownian motion or more general Lévy processes do not

generally predict hazard rates that are multiplicative in the effects of elapsed duration and

those of observed and unobserved heterogeneity. Because such multiplicativity is key to

the identifiabilility of the MPH model (Van den Berg, 2001), estimates of an MPH model

on data from an MHT model are not likely to be informative on true state dependence and

heterogeneity. Thus, there are structural reasons to use an MHT model in applications

in which agents are assumed to solve an optimal stopping problem driven by Brownian

motion or a more general Lévy process. In addition, there may be statistical reasons: We

will give examples of MHT specifications to which no observationally equivalent MPH

specifications exist.

The MHT approach to continuous-time duration analysis is inspired by the literature

on discrete-time discrete choice models pioneered by Heckman (1981a,c). As in this lit-

erature, we explicitly build a statistical model for dynamic discrete outcomes on a latent

process that can serve as the state in a dynamic discrete choice problem. In particu-

lar, Heckman and Navarro (2007) discuss a general discrete-time mixture duration model
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based on a latent process crossing thresholds (see Abbring and Heckman, 2007; and Ab-

bring, 2010; for reviews). They emphasize the distinction between this model and a

discrete-time MPH model and its extensions, and study its identifiability and its relation

to dynamic discrete choice. This paper complements theirs with an analysis in continuous

time. This paper’s continuous-time setting facilitates a different approach to the identi-

fication analysis and connects our work to the popular continuous-time MPH model and

to continuous-time economic models.

An early application in labor economics is Lancaster’s (1972) analysis of strikes. Lan-

caster models strike duration as the time that a Brownian motion with drift first hits

a threshold that depends on the state of the business cycle. He interprets the gap be-

tween the Brownian motion and the threshold as the level of disagreement. Whitmore

(1979) uses a similar model to study job tenure, with some discussion of parametric

unobserved heterogeneity. Lancaster (1990, Sections 3.4.2, 5.7 and 6.5) reviews hitting-

time models based on Brownian motion, and relates them to Jovanovic’s (1979;1984) job

tenure model. Shimer (2008) recently analyzed unemployment durations using Alvarez

and Shimer’s (2011) model of search and rest unemployment, which involves a threshold

rule for transitions between rest unemployment and work. Possible applications in other

fields of economics include marriage and divorce, firm entry and exit, and credit default.

Statisticians have increasingly been studying continuous-time duration models based

on latent processes, including MHT models that are special cases of this paper’s model

(e.g. Aalen and Gjessing, 2001; Lee and Whitmore, 2004, 2006; Singpurwalla, 1995). This

literature is very informative on the descriptive implications of such models, but is silent

about their identifiability. Our contribution to both the econometrics and the statistics

literatures is a rigorous analysis of the empirical content of a nonparametric class of MHT

models with covariates.

The paper is organized as follows. Section 2 introduces the MHT model. Section 3

gives examples of economic models that can be analyzed using the MHT model. Sec-
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tion 4 presents the MHT model’s implications for the data, highlights the key connection

between the analysis of its empirical content and the MPH identification literature, and

develops the main identification results. Section 5 briefly considers estimation. Section

6 discusses extensions with time-varying covariates, and to latent processes with non-

stationary and dependent increments. Finally, Section 7 concludes with some discussion

of the relative merits of the MHT and MPH models as complementary frameworks for

econometric duration analysis.

2 The Model

We model the distribution of a random duration T conditional on observed covariates X

by specifying T as the first time a real-valued Lévy process {Y } ≡ {Y (t); t ≥ 0} crosses

a threshold that depends on X and some unobservables V .

2.1 Lévy Processes

A Lévy process is the continuous-time equivalent of a random walk: It has stationary

and independent increments. Bertoin (1996) provides a comprehensive exposition of Lévy

processes and their analysis. Formally, we have

Definition 1. A Lévy process is a right-continuous stochastic process {Y } with left limits

such that; for every t,∆ ≥ 0; the increment Y (t+ ∆)−Y (t) is independent of {Y (t′); 0 ≤

t′ ≤ t} and has the same distribution as Y (∆).

Note that Definition 1 implies that Y (0) = 0 almost surely.

An important example of a Lévy process is the scalar Brownian motion with drift, in

which case Y (t) is normally distributed with mean µt and variance σ2t, for some scalar

drift parameter µ ∈ R and dispersion parameter σ ∈ [0,∞). Brownian motion is the

single Lévy process with continuous sample paths. In general, Lévy processes may have

jumps. The jump process {Y (t)− limt′↑t Y (t′); t > 0} of a Lévy process {Y } is a Poisson
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point process with characteristic measure Υ such that
∫

min{1, y2}Υ(dy) < ∞, and any

Lévy process {Y } can be written as the sum of a Brownian motion with drift and an

independent pure-jump process with jumps governed by such a point process (Bertoin,

1996, Theorem I.1). The characteristic measure of {Y }’s jump process is called its Lévy

measure and, together with a drift parameter and the dispersion parameter of its Brownian

motion component, fully characterizes {Y }’s distributional properties (see Section 4.1).

Key examples of pure-jump Lévy processes are compound Poisson processes, which have

independently and identically distributed jumps at Poisson times. In fact, in distribution,

each Lévy process can be approximated arbitrary closely by a sequence of compound

Poisson processes (Feller, 1971, Section IX.5, Theorem 2).

2.2 Mixed Hitting Times

Let T (y) denote the first time that the Lévy process {Y } exceeds a threshold y ∈ [0,∞):

T (y) ≡ inf{t ≥ 0 : Y (t) > y}. Here, we use the convention that inf ∅ ≡ ∞; that is, we set

T (y) =∞ if {Y } never exceeds y. For completeness, we set T (∞) ≡ ∞. We specify T to

be the first time that {Y } crosses φ(X)V , or

T = T [φ(X)V ] ; (1)

for some observed covariates X with support X ⊆ Rk, measurable function φ : X →

(0,∞), and positive random variable V , with (X, V ) independent of {Y }. We will refer

to (1) as the mixed hitting-time (MHT) model. We will pay some specific attention to a

version of this model without covariates; that is, with φ = 1. Such a model can be applied

to strata defined by the covariates, without restrictions across the strata, and can thus be

interpreted as a generalization of (1).

The hitting times T (y) characterize durations for given thresholds y, and thus for given

individual characteristics (X, V ). Their analysis is particularly straightforward in the case
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that {Y } is spectrally negative. In this case, {Y } has no positive jumps; that is, its Lévy

measure Υ has negative support. Because {Y } is continuous from the right, this implies

that {Y } equals the threshold at each finite hitting time: Y [T (y)] = y if T (y) < ∞. In

turn, this ensures that T (y) is easy to characterize in terms of the parameters of {Y }

(see Section 4.1). Throughout the paper’s remainder, we assume that {Y } is spectrally

negative. This includes Brownian motion with drift as a special case.

Variation in φ(X)V corresponds to heterogeneity in individual thresholds. The factor

V is an unobserved individual effect and is assumed to be distributed independently of

X with distribution G on (0,∞]. This explicitly allows for an unobserved subpopulation

{V = ∞} of stayers, on which T = T (∞) = ∞. In addition, there may be defecting

movers: For some specifications of {Y }, T = ∞ with positive probability on {V < ∞}.

The distinction between stayers and defecting movers can be of substantial interest (see

Abbring, 2002, for discussion). We exclude the two trivial cases in which T = ∞ almost

surely, the case in which the population consists of only stayers (Pr(V <∞) = 0) and the

case in which all movers defect ({Y } is nonincreasing). In the special case of a Brownian

motion with drift, the latter requires that µ > 0 if σ = 0.

For expositional convenience, we have assumed that the threshold φ(X)V is almost

surely positive. This avoids a mass of agents who employ a zero threshold and have zero

durations. Appendix A shows that this assumption, and the assumption that φ(X) is

finite, can be relaxed.

2.3 A Gaussian Example

Before further motivating the MHT model’s specification with possible applications, we

first highlight some of its salient features with the canonical example that {Y } is a non-

degenerate Brownian motion (σ > 0) with upward drift (µ > 0). In this special case, the

distribution of T (y) is inverse Gaussian with location parameter y/µ and scale parameter

(y/σ)2 (Cox and Miller, 1965). Figure 1 displays two sample paths of {Y } for the case
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Figure 1: Two sample paths of a standard Brownian motion with unit drift, three possible
thresholds, and the corresponding first hitting times.

that µ = σ = 1, with three possible exit thresholds; 0.3, 0.8, and 1.3. For a given thresh-

old y, the time that each sample path first crosses that threshold is a realization of T (y).

Figure 2 characterizes the distribution of T (y) for each of Figure 1’s threshold values y

by plotting the corresponding hazard rates. The three hazard paths have the same hump

shape, but are clearly not proportional. Consequently, the hazard rate of T = T [φ(X)V ]

conditional on (X, V ) is not multiplicative in a function of time and a function of (X, V );

in this sense, the MHT model is structurally different from the MPH model.

The MHT model with Y (t) = µt, µ ∈ (0,∞), is of particular interest in statistics. In

this boundary case of Brownian motion, T (y) = µ−1y is a deterministic linear function

of the threshold y. Consequently, T = µ−1φ(X)V , and the MHT model reduces to

the accelerated failure time (AFT) model for T |X: V takes the role of a “baseline”

duration variable, which is “accelerated” or “decelerated” by the covariate-dependent

factor µ−1φ(X) (see Equation (45) and its discussion in Cox, 1972, pp. 200–201). An
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Figure 2: Hazard rates of T (y) for Figure 1’s three thresholds y in the case that {Y } is a
standard Brownian motion with unit drift.

interpretation of the AFT model based on the MHT model is that it attributes all variation

in durations for given X to ex ante unobserved heterogeneity. The fact that the MHT

model can capture situations in which little or no uncertainty is resolved during the spell

is appealing. Meyer (1990), for example, entertains this possibility (using a model due

to Moffitt and Nicholson, 1982) as an alternative for a job search model in his study of

unemployment insurance and durations.

Even in this boundary case, a wide variety of duration distributions can be generated

by mixing over thresholds. If φ = 1, then T is independent of X, and we can match any

distribution of T = µ−1V , by setting G equal to the corresponding distribution of µT . If φ

is not trivial, and T depends on X; then we can still match any distribution of T |(X = x0),

by setting G in a similar way, for given x0 ∈ X . However, the required specification of

G depends on x0, through φ(x0). Consequently, this construction cannot be repeated to

match an arbitrary distribution of T |X over the entire support X of X without violating

the assumption that V is independent of X. In this boundary case, the distribution of

T |X is necessarily a rescaled version of that of T |(X = x0), with scale factor φ(X)/φ(x0).

In general, the MHT model does not restrict the distribution of T |(X = x0) for given
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x0 ∈ X , but does restrict the way T depends on X.

3 Structural Examples

The MHT model can be applied to the empirical analysis of heterogeneous agents’ optimal

stopping decisions. Dixit and Pindyck (1994) and Stokey (2009) analyze and review

various models based on Brownian motion and their applications. Kyprianou (2006) and

Boyarchenko and Levendorskĭı (2007) review recent extensions to general Lévy processes.

This section presents some simple examples of such models. With payoffs that are

monotonic in a Lévy state variable, threshold rules routinely arise. We primarily focus

on the way primitive heterogeneity generates heterogeneous threshold rules, and how this

squares with the MHT model. We first study the optimal timing of an irreversible invest-

ment. This well-studied problem— it is closely related to the analysis of American options

in finance— is a good vehicle to introduce the relation between optimal stopping models

and the MHT framework. We then study two models of optimal transitions between un-

employment and employment. The first is Dixit’s (1989) model of entry and exit. The

second is a stylized version of the search-matching model that has become the standard

in labor economics. Both models extend the first, investment option model by not only

specifying the transitions out of the state of interest, but also the transitions into it. This

determines the initial conditions for the MHT analysis of the durations in this state, and

tightly structures the dependence of the thresholds on primitive heterogeneity.

3.1 Investment Timing

McDonald and Siegel (1986) study the optimal timing of an irreversible investment in a

project of which the log value follows a Brownian motion. Their paper is an early and

influential example of the large “real options” literature that applies insights from the

literature on pricing financial derivatives— in this case, perpetual American call options—
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to real investments (Dixit and Pindyck, 1994). Here, we discuss a version of their model,

due to Mordecki (2002), in which log project values follow a Lévy process.

Consider an agent with the option of investing an amount K > 0 in a project at

a nonnegative time of his choice. If the agent invests at time t, the project returns a

gross payoff of U(t) ≡ U0 exp [Y (t)] to the agent, where U0 > 0 is the project’s initial

value. Mordecki allows {Y } to be a general Lévy process; we continue to assume it

is spectrally negative. The agent chooses a random investment time T that maximizes

E [exp(−RT ) {U(T )−K}], the expected net payoff discounted at a rate R. The agent’s

choice is restricted to investment times T that are feasible given the information available

to the agent, which, at time t, we take to be {Y (t′); 0 ≤ t′ ≤ t}, K, U0, and R. Formally,

{T ≤ t} should be adapted to the filtration generated by these variables.

This investment problem’s analysis requires some notation. Define

Λ(s) ≡ − ln E
[
exp {−sT (1)} · I {T (1) <∞}

]
, s ∈ [0,∞).

Here, I(·) ≡ 1 if · is true, and 0 otherwise. The factor I {T (1) <∞} makes explicit that

the distribution of the hitting time T (1) may be defective. The function Λ is called the

Laplace exponent of the hitting times of {Y } and is central to Section 4’s identification

analysis. It is fully determined by the distributions of {Y }; conversely, it also fully deter-

mines these distributions (see Section 4.2). The Laplace exponent Λ is strictly increasing,

with Λ(0) ≥ 0 and lims→∞ Λ(s) =∞.

Suppose that R is such that Λ(R) > 1. For example, if {Y } is a Brownian motion

with general drift coefficient µ ∈ R and dispersion coefficient σ ∈ (0,∞), then Λ(s) =[√
µ2 + 2σ2s− µ

]
/σ2 and this requires that R > µ+σ2/2. Denote Y (t) ≡ supt′∈[0,t] Y (t′).

Let ER be an independent exponential time with parameter R. Then, because {Y } is

spectrally negative, Y (ER) has an exponential distribution with parameter Λ(R) (Bertoin,

1996, Section VII.1). Using this, Theorem 1 in Mordecki (2002) implies that the agent
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will invest when {Y } first crosses

Y M ≡ max

{
ln

[
K

U0

· Λ(R)

Λ(R)− 1

]
, 0

}
, (2)

at time T (Y M). Note that Y M decreases with the discount rate R. As R→∞, the agent

will invest as soon as the investment option is in the money, U(t) > K. If the option is

sufficiently deep in the money at time 0; that is, if U0 is sufficiently larger than K; then

Y M = 0, and the agent will invest immediately.

A closely-related class of models, due to Novikov and Shiryaev (2005), alternatively

specifies the payoffs to T as E
[
exp(−RT ) max {U0 + Y (T )−K, 0}l

]
for some l ∈ {1, 2, . . .}.

Here, we can interpret U0+Y (t) as a project’s value at time t, with K again the investment

cost. Theorem 2 in Kyprianou and Surya (2005) gives optimal investment thresholds for

all l ∈ {1, 2, . . .}. Again applying the simplifications brought by the absence of positive

shocks, these thresholds reduce to

Y 1 ≡ max

{
K − U0 +

1

Λ(R)
, 0

}
and Y 2 ≡ max

{
K − U0 +

2

Λ(R)
, 0

}
,

for l = 1 and l = 2, respectively.

In both specifications, primitive heterogeneity in investment costs K, initial project

values U0, and discount rates R generates heterogeneous nonnegative investment thresh-

olds. Suppose that we have data on investment times T and covariates X; that (K,U0, R)

is fully determined by X and an unobserved heterogeneity factor V ; and that {Y } is in-

dependent of (X, V ). Then, we can apply the MHT model to the empirical analysis of the

latent process {Y }, the effect of the covariates X on the threshold, and the distribution of

the unobserved heterogeneity in the threshold (if necessary, using Appendix A’s extension

with zero thresholds). In particular, Section 4.2’s Theorem 1 establishes conditions for the

identification of these quantities under the assumption that the threshold is multiplicative

in the effect of X and that of V .

11



Without further data or assumptions on the model’s primitives, such a direct as-

sumption on the reduced-form dependence of the threshold on X and V needs be made.

Because thresholds are nonnegative, a multiplicative specification is a natural first choice.

Typically, this implies that the primitive heterogeneity in (K,U0, R) depends on Λ, which

is unattractive. For example, in Novikov and Shiryaev’s specification, with l = 1 and

U0 = K, we get Y 1 = φ(X)V if R = Λ−1
[
{φ(X)V }−1].

With more information or additional structure, this paper’s results allow for the anal-

ysis of more attractive specifications of the MHT model. For example, if data stratified

on V are available, with multiple durations per stratum, Section 4.6’s Theorem 2 can be

applied to establish identification of a model in which X enters in an unrestricted way

(that is, a version of the MHT model with φ = 1 applied to strata defined by X). This

accommodates any specification of the dependence of (K,U0, R) on X and V .

Either way, under an appropriate set of identifying assumptions, we can separately

measure agent-level investment dynamics, coded into Λ, and investment threshold het-

erogeneity. This provides a theory-based empirical distinction of state dependence and

heterogeneity in investment timing. The results can moreover be used to further explore

the model’s primitives. Obviously, without more information on these primitives, or strong

assumptions, they are typically not fully identified. Nevertheless, the MHT identification

results provide a useful first stage for exploring their second-stage identification, and that

of other structural quantities. For example, in Novikov and Shiryaev’s example with

U0 = K and l = 1, the investment option’s value is E [exp {−RT (Y 1)}Y 1] = exp(−1)Y 1.

Thus, from the MHT analysis, not only the distribution of R, but also the distribution of

option values is identified up to scale if we assume linear utility.

An unattractive feature of this section’s models is that they take the project’s initial

value U0 and the investment size K as primitives. Without further constraints on their

distribution in the data; it is clear from (2) that this may lead to masses of agents with

zero thresholds, who invest immediately, and nontrivial selection on primitives in the
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subpopulation with positive thresholds. This complicates the model’s econometric speci-

fication, and the interpretation of the empirical results. Such problems are not specific to

the MHT framework, but are a special instance of the initial-conditions problem studied

by Heckman (1981b). This problem arises if a stochastic process is not sampled from its

origin, and is usually solved by somehow modeling the initial conditions of the sample.

Within the context of this section’s models, this requires that we model the way agents

ended up with their investment option to begin with. To this end, we will explicitly model

entry into the state of interest along with exit from this state.

3.2 Unemployment Durations and Heterogeneous Entry and Exit

Costs

Consider a labor market in which workers continuously choose between unemployment

and employment. A worker earns a flow B when unemployed, and U(t∗) ≡ U0 exp [Y ∗(t∗)]

when employed at calendar time t∗, with {Y ∗} a Brownian motion with drift parameter

µ and dispersion parameter σ. Note that {U} is a geometric Brownian motion with drift,

and that E[U(t∗)] = U0 exp [(µ+ σ2/2)t∗]. Workers incur a lump-sum cost K ≥ 0 when

they leave their job; and pay K ≥ 0 when they enter a job. They maximize expected

earnings, discounted at a rate R > µ+ σ2/2.

This setup is equivalent to Dixit’s (1989) model of firm entry and exit, and has many

alternative applications, for example to marriage and divorce. From Dixit’s analysis, it

follows that an unemployed worker enters employment when {U} increases above U , and

resigns when {U} falls below U ; where U = U if K = K = 0, and U > U otherwise.

The MHT model applies to an inflow sample of unemployment durations. Denote the

calendar time at which the worker enters unemployment with T0. Let t ≡ t∗ − T0 be

the duration since entering the sample at calendar time t∗. Then, unemployed start the

sampled spell with earnings U(t+T0) = U , and end their spell when earnings hit the exit

threshold U ≥ U . Define Y (t) ≡ lnU(t + T0) − lnU , and note that {Y } is a Brownian

13



motion with drift parameter µ and dispersion parameter σ. Then, we can equivalently say

that workers initially have normalized log earnings Y (0) = 0, and leave for employment

when {Y } hits Y D ≡ lnU − lnU . From Dixit’s (1989) analysis it follows that Y D varies

on [0,∞) with observed and unobserved determinants of K and K, with Y D = 0 only in

the frictionless limit. Thus, a multiplicative specification Y D = φ(X)V is natural.

If we generalize {Y ∗} to be a spectrally-negative Lévy process, unemployment dura-

tions continue to have an MHT structure of the type introduced in this paper. However,

unlike in the Gaussian case, employment durations would not have such a structure: Em-

ployment may be terminated at the time of a negative earnings jump. This exemplifies

the complementary nature of this paper’s MHT model and hazard models.

3.3 Job Separations and Heterogeneous Search

In Dixit’s (1989) model, transaction costs are lump-sum entry and exit costs, earnings

are general, and utility is linear. In labor economics, transaction costs are often specified

as job search frictions. Moreover, key search models, such as Mortensen and Pissarides’s

(1994), entertain job-specific shocks. Therefore, we end this section with a basic model of

endogenous job separations in the presence of heterogeneous search frictions, job-specific

shocks, and nonlinear utility.

Again consider a labor market in which workers are either employed or unemployed.

When employed in their j-th job for an amount of time t, workers earn a flow utility

U0 exp [−ςY j(t)]. Here, {Y j} is a Lévy process indexed by job tenure t that is distributed

identically and independently across jobs j, and U0 > 0 and ς > 0 are job-invariant

parameters. Employed workers cannot search on the job; but, they can leave their jobs

for unemployment immediately and at no cost, and will do so when the expected dis-

counted utility of continued employment falls below the expected discounted utility of

unemployment. Once they are unemployed, workers can search sequentially for new jobs.

We assume that unemployed workers are offered jobs at an exogenous and independent
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Poisson rate A > 0, and earn a nonnegative flow utility B < U0. Because all new jobs

offer identical earnings prospects, this ensures that unemployed workers accept the first

job they are offered. Consequently, search frictions are effectively exogenous, and we can

focus on endogenous job separations given search frictions indexed by A.

Denote the expected discounted utility in a job in state y with W (y), and the expected

discounted utility of unemployment with W . We first provide some explicit results for

the special case in which {Y j} is a compound Poisson process with shocks that arrive

at a Poisson rate λ > 0 and have an independent exponential distribution on (−∞, 0)

with parameter ω > 0, and drift parameter µ > 0. To ensure nontrivial job separa-

tion strategies; we assume that ω > ς, so that E [exp {−ςY j(t)}] < ∞ for finite t; and

we assume that the discount rate R > 0 strictly exceeds the expected utility growth

rate in employment, ς
[

λ
ω−ς − µ

]
, so that the expected discounted utility W ∗(y) of be-

ing employed forever in a job currently in state y exists and equals γ exp (−ςy), with

γ ≡ U0/
{
R− ς

[
λ
ω−ς − µ

]}
> 0.

From standard contraction arguments, it follows that W (y) weakly decreases with

y, so that employed workers apply a threshold strategy: They will leave their j-th job

for unemployment when Y j(t) first exceeds a threshold Y S. Given W , the expected

discounted utility in employment W and the job separation threshold Y S satisfy the

Bellman equation

(R + λ)W (y) = U0 exp (−ςy)+λ

∫ ∞
0

W (y−e)ω exp(−ωe)de+µW ′(y), y ∈ (−∞, Y S);

with value matching, limy↑Y S
W (y) = W ; smooth pasting, limy↑Y S

W ′(y) = 0; and a no-

bubble condition, limy→−∞ [W (y)−W ∗(y)] = 0. It is straightforward to verify that this

implies that W (y) = W ∗(y) + δ(W ) exp(ζy) and Y S = (ζ + ς)−1 ln
(

ςγ
δ(W )ζ

)
; where ζ ≡[

R + λ− µω +
√

(R + λ− µω)2 + 4Rωµ

]
/(2µ) > 0, and δ(W ) is implicitly determined

by δ(W ) = exp (−ζY S) [W −W ∗ (Y S)]. With W = {B + A [γ + δ(W )]} / (A+R), this

gives a unique solution (W,W, Y S).
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The job separation threshold Y S decreases with A, and Y S ↓ 0 as A → ∞. That is,

smaller job search frictions make the employed less tolerant to decreases in utility from

employment; in the frictionless limit, they will not tolerate any utility loss. If A varies over

(0,∞) in the population, then the job separation threshold Y S has support in (0,∞). As

before, under assumptions that ensure that Y S = φ(X)V , the MHT model can be applied

to employment duration data to learn about job separations.

As in Section 3.1, deeper parameters can possibly be identified if more data are avail-

able. In particular, note that the model specifies that unemployment durations conditional

on A are exponential, so that the distribution of A is identified from a random sample of

unemployment durations by the uniqueness of the Laplace transform (Feller, 1971, Section

XIII.1, Theorem 1). This is a simple example of the MHT and mixed hazard approaches

joining forces in structural duration analysis.

A similar analysis can be developed for the case that {Y } is a Brownian motion with

drift, along the lines of Stokey (2009, Section 6.4). In fact, the results extend to more

general Lévy processes (Boyarchenko and Levendorskĭı, 2007, Chapter 11). Here, we fo-

cused on the compound Poisson case to connect to the search-matching literature in labor

economics, which often relies on Poisson processes. Mortensen and Pissarides’s (1994)

model with endogenous job separations, for example, assumes that new match-specific

productivity values are drawn independently from a fixed distribution at Poisson times.

This specification is typical of the way much of the search literature models transitions,

and ensures a stationary environment in which agents only leave their jobs at the time of

a shock. It directly implies a separation hazard, which is the arrival rate of new produc-

tivity draws times the time-invariant probability that such a draw is below a separation

threshold. This can be contrasted with the specification studied here, which involves

persistent idiosyncratic shocks that improve the payoffs in employment, combined with a

common continuous drift towards separation. Because shocks can only improve payoffs to

employment, separations do not take place at Poisson times, and a hazard specification
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is not directly implied. Because shocks are persistent, the model implies that individual

workers, with given thresholds, have time-varying rates of leaving their jobs.

4 Empirical Content

The distribution of T |X cannot be explicitly expressed in terms of the MHT model’s

primitives, because the distributions of the hitting times T (y) are not explicitly known,

except in special cases. It turns out to be more convenient to analyze its Laplace transform,

LT (s|X) ≡ E
[
exp (−sT ) · I (T <∞) X

]
, s ∈ [0,∞). (3)

The factor I (T <∞) makes explicit that the distribution of T |X may be defective. Note

that the defect has probability mass Pr (T =∞|X) = 1−LT (0|X). The Laplace transform

LT (·|X) uniquely characterizes the distribution of T |X (up to almost sure equivalence;

see Feller, 1971, Section XIII.1, Theorem 1). It can be given explicitly, using results on

the first hitting times of spectrally-negative Lévy processes.

4.1 Characterization

We first characterize the hitting-time process {T} ≡ {T (y); y ≥ 0} implied by {Y }. This

requires a common probabilistic characterization of {Y }. Bertoin (1996, Section VII.1)

shows that E [exp {sY (t)}] = exp [ψ(s)t] for s ∈ C with nonnegative real part, with the

Laplace exponent ψ given by the Lévy-Khintchine formula,

ψ(s) = µs+
σ2

2
s2 +

∫
(−∞,0)

[esy − 1− syI(y > −1)] Υ(dy). (4)

Here, µ ∈ R absorbs any linear drift of {Y }, σ ∈ [0,∞) is the dispersion parameter of its

Brownian motion component; and Υ is the Lévy measure of its jump component, where

Υ satisfies
∫

min{1, y2}Υ(dy) < ∞ and has negative support. The Laplace exponent ψ
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of {Y } fully characterizes its distributions, through its characteristic function s ∈ R 7→

E [exp {isY (t)}] = exp [ψ(is)t].

Equation (4) gives the most common parameterization of ψ. It corresponds to the

Lévy-Itô decomposition of {Y } in a Brownian motion with linear drift µt, a compound

Poisson process with jumps in (−∞,−1], and a pure-jump martingale with jumps in

(−1, 0) (Bertoin, 1996, Section I.1). Alternative parameterizations arise if we decompose

the jumps of {Y } in small and large shocks in other ways. These parameterizations

all have the same dispersion parameter σ and Lévy measure Υ, but have different drift

parameters. They may be more convenient when estimating the MHT model (see Section

5). Here, the standard parameterization in (4) suffices.

The Laplace exponent ψ, as a function on [0,∞), is continuous and convex, and satisfies

ψ(0) = 0 and lims→∞ ψ(s) = ∞. Therefore, there exists a largest solution Λ(0) ≥ 0 to

ψ[Λ(0)] = 0, and an inverse Λ : [0,∞) → [Λ(0),∞) of the restriction of ψ to [Λ(0),∞).

Theorem VII.1 of Bertoin (1996) implies that {T} is a killed subordinator with Laplace

exponent Λ:

LT (y)(s) ≡ E
[
exp {−sT (y)} · I {T (y) <∞}

]
= exp [−Λ(s)y] , s ∈ [0,∞). (5)

That is, {T} is a nondecreasing Lévy process (subordinator) with Laplace exponent Λ −

Λ(0), forced to equal ∞ (killed) from some random threshold level EΛ(0) up if Λ(0) > 0.

Here, EΛ(0) has an exponential distribution with parameter Λ(0), and is independent from

({Y }, X, V ). The probability Pr
(
EΛ(0) ≤ y

)
= 1− exp [−Λ(0)y] that {T} has been killed

at or below threshold level y equals the share Pr [T (y) =∞] = 1 − LT (y)(0) of defecting

movers at this threshold level.

The result that {T} is a killed subordinator is intuitive. First, note that {Y } can only

cross a threshold y after crossing all lower thresholds. Consequently, {T} is nondecreasing.

Next, recall from Section 2 that the assumption that {Y } has no positive jumps ensures

that Y [T (y)] = y on {T (y) < ∞}. Therefore, on {T (y) < ∞}, T (y + ∆) − T (y) is the
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time it takes {Y } to move from y at time T (y) to y+ ∆. Because {Y } is a strong Markov

process (Bertoin, 1996, Proposition I.6), this time is independent of {Y (t); 0 ≤ t ≤ T (y)},

and therefore of {T (y′); 0 ≤ y′ ≤ y}, and has the same distribution as T (∆). If Λ(0) = 0,

T (y) < ∞ almost surely, and this implies that {T} is a Lévy process. Because {T} is

nondecreasing, it follows that it is, more specifically, a subordinator. If Λ(0) > 0, then

T (y) =∞ with probability 1− exp [−Λ(0)y], and {T} is a killed subordinator.

If, for example, {Y } is a Brownian motion with general drift coefficient µ ∈ R and

dispersion coefficient σ ∈ (0,∞), we have that ψ(s) = µs + σ2s2/2, so that Λ(0) =

max{0,−2µ/σ2} and Λ(s) =
[√

µ2 + 2σ2s− µ
]
/σ2. If µ ≥ 0, then Λ(0) = 0 and T (y)

is nondefective. If µ < 0, on the other hand, Λ(0) = −2µ/σ2 > 0 and the distribution

of T (y) has a defect of size 1 − exp(2yµ/σ2). Either way, {T} is an inverse Gaussian

subordinator, killed at an independent exponential rate Λ(0) if Λ(0) > 0.

Not every subordinator is the hitting-time process of a spectrally-negative Lévy pro-

cess. For example, consider the stable subordinator of index ρ ∈ (0, 1]; that is, the Lévy

process with Laplace exponent Λρ(s) ≡ sρ (Bertoin, 1996, Section III.1). Bertoin’s (1996)

Proposition I.2(i) implies that lims→∞ s
−2ψ(s) = σ2/2 ∈ [0,∞) if ψ is the Laplace expo-

nent of a spectrally-negative Lévy process. Consequently, if ρ ∈ (0, 1/2); Λ−1
ρ (s) = s1/ρ

cannot be the Laplace exponent of a spectrally-negative Lévy process. This suggests that,

when estimating the MHT model, it is more convenient to parameterize the model in terms

of ψ, than to specify Λ directly through the Lévy-Khintchine formula for subordinators

(Bertoin, 1996, Section III.1). We will come back to this in Section 5.

Now define the Laplace transform LT (·|X, V ) of the distribution of T |X, V analogously

to LT (·|X) in (3). Similarly, define L to be the Laplace transform of the distribution G

of V (for expositional simplicity, we suppress the subscript V from L). From (1) and (5),

it follows that LT (s|X, V ) = exp [−Λ(s)φ(X)V ], so that

LT (s|X) = L [Λ(s)φ(X)] ; s ∈ [0,∞), (6)
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almost surely.

4.2 Main Identification Result

Equation (6) characterizes the distribution of T |X in terms of the MHT triplet (Λ, φ,L). In

Section 4’s remainder, we study the identification question whether, conversely, (Λ, φ,L)

is uniquely determined from the distribution of T |X.

Because there is a one-to-one relation between (Λ, φ,L) and the MHT model’s prim-

itives (µ, σ2,Υ) and (φ,G), the identification analysis applies without change to these

primitives. In particular, G can be uniquely determined from L by the uniqueness of the

Laplace transform (Feller, 1971, Section XIII.1, Theorem 1). The Laplace exponent ψ of

{Y } is uniquely determined from Λ by inversion and, if Λ(0) > 0, analytic extension from

[Λ(0),∞) to [0,∞). Subsequently, the parameters (µ, σ2,Υ) of the latent Lévy process can

be uniquely determined from ψ by the uniqueness of the Lévy-Khintchine representation

(Bertoin, 1996, Theorem I.1).

We focus on the “two-sample” case that X = {0, 1} and φ(x) = βx, for some β ∈

(0,∞), and we have data on the distributions F0 of T |(X = 0) and F1 of T |(X = 1). This

assumes minimal covariate variation and thus poses the hardest identification problem

(Elbers and Ridder, 1982, use a similar approach in their analysis of the MPH model). We

assume that β 6= 1, so that there is actual variation with the covariates. This assumption

can be tested, because F0 6= F1 if and only if β 6= 1. Note that we have implicitly fixed

φ(0) = 1, which is an innocuous normalization because the scale of V is unrestricted at

this point.

Key to our analysis is an analogy with the identification analysis of the MPH model.

To appreciate this, note that the right-hand side of (6) equals the survival function—

rather than the Laplace transform— of T |X in a two-sample MPH model with integrated

baseline Λ, covariate effect φ(X) = βX , and unobserved-heterogeneity distribution G.

Consequently, we can borrow insights from Elbers and Ridder’s (1982) and Ridder’s (1990)
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analyses of this MPH model. Because of possible defects in the MHT model, their analyses

do not apply directly. In particular, the possibility that movers defect, Λ(0) > 0, creates an

identification problem similar to a left-censoring problem in the MPH model. Fortunately,

the MHT model’s mover-stayer structure can be identified without further assumptions,

and problems caused by defecting movers can be solved by analytic extension.

First, consider identifiability of the mover-stayer structure from (F0, F1).

Lemma 1 (Identifiability of the Share of Stayers). If two MHT triplets (Λ, β,L)

and (Λ̃, β̃, L̃) imply the same pair of distributions (F0, F1), then L̃(0) = L(0).

Lemma 1 directly implies identification of the share of stayers, Pr(V =∞|X) = Pr(V =

∞) = 1− L(0). In turn, the proportion of defecting movers in sample x can be uniquely

determined from the share of stayers and Fx, using that

Pr(T =∞, V <∞|X = x) = L(0)− lim
t→∞

Fx(t); x = 0, 1.

Lemma 1’s proof is given in Appendix B, with the proofs of this section’s other results.

It exploits that the share of defecting movers, if positive, varies between the two samples

and, by the assumed independence of V and X, the share of stayers does not. Intuitively,

if the defects of F0 and F1 are the same, they equal the share of stayers; and movers never

defect, Λ(0) = 0. Otherwise, Λ(0) > 0, and it is clear from (6) that the data only provide

direct information about L away from 0; then, the analyticity of the Laplace transform

can be used to learn about L(0). Abbring (2002) proves a related result for the MPH

model, but relies on an additional assumption on G.

Our core result on the identifiability of (Λ, β,L) requires a regularity condition in

terms of Karamata’s concepts of slow and regular variation (Feller, 1971, Section VIII.8).

Definition 2. A function ν : (0,∞)→ (0,∞) varies regularly with exponent τ ∈ R at 0

(at ∞) if ν(bs)/ν(s)→ bτ as s→ 0 (s→∞) for every b ∈ (0,∞).
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A function that varies regularly with exponent 0 is also said to be slowly varying. Any

function that has a positive (and finite) limit varies slowly; but slowly varying functions

may converge to 0 or diverge, such as s 7→ | ln(s)| and s 7→ 1/| ln(s)|. If ν varies regularly

with exponent τ , then ν(s) = sτν0(s) for some slowly varying function ν0. By Feller (1971,

Section VIII.8, Lemma 2), a function ν that varies regularly with exponent τ at ∞ (at 0)

asymptotically satisfies sτ−ε < ν(s) < sτ+ε, for any given ε > 0 (ε < 0).

Theorem 1 (Identifiability of the MHT Model). Let (Λ, β,L) and (Λ̃, β̃, L̃) be MHT

triplets that imply the same pair of distributions (F0, F1) and that satisfy at least one of

the following:

(R1). |L′| and |L̃′| vary regularly at 0, with exponents τ ∈ (−1, 0] and τ̃ ∈ (−1, 0];

(R2). |L′| and |L̃′| vary regularly at ∞, with exponents τ ∈ (−∞,−1) and τ̃ ∈ (−∞,−1);

(R3). |ψ′| and |ψ̃′| vary regularly at 0, with exponents τ ∈ (−1, 1] and τ̃ ∈ (−1, 1]; or

(R4). |ψ′| and |ψ̃′| vary regularly at ∞, with exponents τ ∈ [0, 1] and τ̃ ∈ [0, 1].

Then ρ ≡ (τ + 1)/(τ̃ + 1) ∈ [1/2, 2] and

β̃ = βρ,

Λ̃ = κΛρ, and

L̃(κsρ) = L(s) for all s ∈ [0,∞),

for some κ ∈ (0,∞).

Theorem 1 establishes identification up to a power transformation, indexed by ρ, and

an innocuous normalization, indexed by κ. It is analogous to Ridder’s (1990) Theorem

1 for the generalized accelerated failure time (GAFT) model, which Ridder applied to

the MPH model. Our analysis deviates in three important ways from Ridder’s. First,

our proof makes explicit use of the assumption that the MHT triplets satisfy at least
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one of (R1)–(R4). Abbring and Ridder (2011) show that Ridder’s Theorem 1 implicitly

requires a similar regularity condition. We discuss (R1)–(R4) in Subsection 4.3. Second,

we allow for defective duration distributions, which naturally arise in the context of an

MHT model. Third, we use the special structure of the MHT model to show that ρ cannot

be any positive number, but lies in [1/2, 2].

The observational equivalence characterized by Theorem 1 can be given an appealing

stochastic interpretation. First, note that different values of κ correspond to different scale

normalizations of the latent process and the threshold. Take the time T implied by (1) for

some latent process {Y }, with inverse Laplace exponent Λ, and some threshold βXV , with

L the Laplace transform of the distribution of V . Then, the process {κ−1Y } and threshold

βX · κ−1V , with κ ∈ (0,∞), produce the same time T and thus the same distributions

F0 and F1. Moreover, as in Theorem 1 with ρ = 1, {κ−1Y } has inverse Laplace exponent

Λ̃ ≡ κΛ and the distribution of κ−1V has Laplace transform L̃(s) ≡ L(κ−1s).

Next, set κ = 1, and focus on the interpretation of ρ. Without loss of generality,

let ρ ∈ [1/2, 1). Let {Sρ} be an independent stable subordinator of index ρ and {T} a

hitting-time process characterized by Λ. Then, the process {T [Sρ(y)] ; y ≥ 0} has Laplace

exponent Λ̃ ≡ Λρ (Kyprianou, 2006, Lemma 2.15). Consequently, for each given threshold

level y, Λ̃(y) corresponds to a positive-stable mixture T [Sρ(y)] over {T}. Thus, we can

interpret (Λ̃, β̃, L̃) as reassigning some of the threshold heterogeneity in (Λ, β,L) to the

individual hitting-time process. Indeed, |β̃ − 1| = |βρ − 1| < |β − 1|, so that there is

less observed variation in the thresholds between the two samples. Similarly, we can

interpret G̃ as specifying less unobserved heterogeneity than G. Suppose, for example,

that L(0) = 1 and that |L′| varies regularly at 0 with exponent τ ∈ (−1, 0), as in Heckman

and Singer (1984a). Then, it follows from the Lemma in Feller (1971, Section VIII.9),

Theorem 1, and Theorem 4 in Feller (1971, Section XIII.5) that 1 − G and 1 − G̃ vary

regularly at∞ with exponents −1 < −(τ+1) < 0 and −(τ+1)/ρ < −(τ+1), respectively.

Consequently, G̃ has a thinner right tail than G.
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The restriction of ρ to [1/2, 2] in Theorem 1 relies on the special structure of ψ and ψ̃.

Recall from Section 4.1 that ψ is convex, and that ψ(s)→∞ and s−2ψ(s)→ σ2/2 ∈ [0,∞)

as s → ∞. Now suppose that Λ̃ ≡ κΛρ characterizes the hitting-time process of a latent

process with Laplace exponent ψ̃. From the fact that Λ and Λ̃ are the inverses of ψ and

ψ̃, respectively, it follows that ψ̃(s) = ψ
[
(s/κ)1/ρ

]
. Because ψ̃ should at least be of linear

order and at most of quadratic order at ∞, just like ψ, it is necessary that ρ ∈ [1/2, 2].

Note that Λρ is the Laplace exponent of a (killed) subordinator if Λ is; for all ρ ∈ (0, 1],

and not just for ρ ∈ [1/2, 1]. Theorem 1 provides identification up to ρ ∈ (0,∞) for a more

general model that requires {T} to be a subordinator, but not necessarily the hitting-time

process of a spectrally-negative Lévy process. Any strategy for point identification of Λ

that exploits the subordinator structure of {T}, but not its hitting-time structure, will

provide overidentifying restrictions that can be used in testing the MHT model.

4.3 Tail Conditions

Theorem 1 requires that the MHT triplets satisfy one of (R1)–(R4). From the literature’s

perspective, this is not a strong requirement, because it encompasses all approaches to

the identification of the MHT model suggested by the MPH literature and includes the

canonical special case that {Y } is a Brownian motion with drift. This section reviews

Theorem 1’s application to these cases.

First, note that (R1)–(R4) only require regular variation of |L′| and |L̃′| or |ψ′| and

|ψ̃′|; the ranges of the exponents of regular variation follow from the properties of the

functions involved, and do not constitute additional restrictions, except for the exclusion

of the boundary cases that τ = −1 and/or τ̃ = −1 in (R1)–(R3). In particular, the ranges

in (R1) and (R2) are determined by the restrictions that |L′| and |L̃′| are decreasing

and integrable, and the Lemma in Feller (1971, Section VIII.9). The ranges in (R3)

and (R4) follow from the Lévy-Khintchine formula (4) and that same Lemma. In the

boundary cases, the tails of F0 and F1 are not sufficiently informative on the MHT model’s
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primitives and Theorem 1’s proof breaks down (Abbring and Ridder, 2011, provide a

detailed discussion for the GAFT model that can be adapted to the MHT framework).

Second, each of the assumptions suggested by the MPH literature to achieve identi-

fication up to scale implies that one of (R1)–(R4) holds with τ and τ̃ equal to the same

a priori known value. For example, Elbers and Ridder (1982) proved identifiability of

the two-sample MPH model under the assumption that the unobserved factor has a fi-

nite mean. In the MHT model, the weaker assumption that all triplets (Λ, β,L) satisfy

lims↓0 |L′(s)| = E[V ·I(V <∞)] <∞ is appropriate, because this allows V to be defective.

Because Pr(0 < V <∞) > 0, this implies that 0 < lims↓0 |L′(s)| = E[V · I(V <∞)] <∞,

so that |L′| varies slowly at 0. Consequently, the requirement that both (Λ, β,L) and

(Λ̃, β̃, L̃) in Theorem 1 satisfy this assumption implies (R1) with τ = τ̃ = 0. In turn, this

fixes ρ = 1 and yields identification up to scale.

Within the context of the MPH model, the assumption that the unobserved factor

has a finite mean is an arbitrary normalization with substantive effects on the model

interpretation (Ridder, 1990). The corresponding assumption on the MHT model in some

cases follows naturally from optimal stopping models in which threshold heterogeneity is

deduced from unbounded primitive unobserved heterogeneity. For example, in Section

3.2’s model of unemployment durations with a given job entry cost K < ∞, workers

will enter employment at a finite wage, even if they would have to work at that wage

forever: Y D <∞ even if K →∞. Consequently, given K <∞, unbounded heterogeneity

in K leads to bounded threshold heterogeneity. Similarly, in Section 3.3’s model of job

tenure with given flow utility B > 0 from unemployment, the job separation threshold

Y S converges to a finite upper limit as job search becomes impossible (A → 0). Thus,

given B > 0, unbounded heterogeneity in search frictions implies bounded threshold

heterogeneity. Both examples imply that, if the threshold is specified as φ(X)V , V is

bounded and therefore has a finite mean.

Following Heckman and Singer (1984a), we could alternatively fix ρ = 1 in Theorem 1
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by assuming that |L′| and |L̃′| vary regularly at 0 with the same exponent τ = τ̃ ∈ (−1, 0).

We could also make an assumption on the variation of |L′| and |L̃′| at ∞. However, we

have no examples of economic models that imply either of these alternative assumptions.

More recently, Ridder and Woutersen (2003) obtained identification of the MPH model

by assuming that the baseline hazard is bounded away from zero and infinity near time

0. The analogous assumption on the MHT model without defecting movers; that is, with

Λ(0) = Λ̃(0) = 0; requires that lims↓0 Λ′(s) < ∞ and lims↓0 Λ̃′(s) < ∞. By the inverse

function theorem, and the convexity of ψ and ψ̃, this implies that 0 < lims↓0 ψ
′(s) < ∞

and 0 < lims↓0 ψ̃
′(s) < ∞, so that |ψ′| and |ψ̃′| vary slowly at 0. Consequently, (R3)

is satisfied with τ = τ̃ = 0, and Theorem 1’s result holds with ρ = 1. Trivially, this

result directly extends to the general case in which movers may defect and Λ(0) > 0 and

Λ̃(0) > 0 if, instead of making an assumption on the Laplace exponent of {T}, we directly

require that 0 < lims↓0 |ψ′(s)| <∞ and 0 < lims↓0 |ψ̃′(s)| <∞.

The condition that 0 < lims↓0 |ψ′(s)| < ∞ can be related to the long run behavior of

the latent process {Y }: It requires that E[Y (t)] = t lims↓0 ψ
′(s) 6= 0 and E[Y (t)] > −∞

for t ∈ (0,∞). In the investment option problem introduced in Section 1, E[Y (t)] < 0

is natural if the project depreciates over time relative to alternative investments, say

because technological progress is embodied in new projects. In this case, the agent may

end up never investing, and Λ(0) > 0. In a model of job tenure like Section 3.3’s, the

accumulation of job-specific skills may lead to a similar pattern; but wear of the job and

progress elsewhere may instead imply E[Y (t)] > 0 and Λ(0) = 0. The condition that

E[Y (t)] > −∞ only has bite if Λ(0) > 0, and is a restriction on the negative jumps in

{Y }. Because we have excluded positive jumps, E[Y (t)] <∞ always holds.

Finally, both (R3) and (R4) are satisfied in the canonical example that {Y } is a

Brownian motion with drift parameter µ ∈ R and dispersion parameter σ ∈ [0,∞). In

this case, ψ′(s) = µ+σ2s, and σ > 0 if µ ≤ 0, so that |ψ′| varies regularly at both 0, with

exponent 1 if µ = 0 and 0 otherwise, and ∞, with exponent 1 if σ > 0 and 0 if σ = 0.
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Consequently, if both ψ and ψ̃ are Laplace exponents of Brownian motion with drift, (R3)

holds with τ ∈ {0, 1} and τ̃ ∈ {0, 1} and (R4) holds with (possibly different) τ ∈ {0, 1}

and τ̃ ∈ {0, 1}. Either way, Theorem 1’s conclusion follows with ρ ∈ {1/2, 1, 2}. Thus, if

two Gaussian MHT triplets are observationally equivalent, then they are either the same,

up to a scale normalization, or one triplet corresponds to a degenerate upward drift and

the other to a driftless nondegenerate Brownian motion. Identification up to scale can be

achieved by requiring either σ > 0 or µ > 0.

4.4 Censoring and Competing Risks

The identification analysis so far assumes that F1 and F2 are known. In practice, duration

data are often censored. With independent censoring (Andersen et al., 1993, Section II.1),

F1 and F2 are identified, provided that obvious support conditions are met. This paper’s

identification results carry over to such independently censored data without change. A

common example is right-censoring at times C that are independent of T given X, and

that have unbounded support.

The identification analysis does not immediately carry over to censoring mechanisms

that obstruct the identification of F1 and F2. For example, take the case that Y (t) = t

and β = 1, so that T = V . Then, if all durations are censored at some fixed time

c ∈ (0,∞), only the restriction of G to [0, c] can possibly be identified. Nevertheless, the

specific structure implied by the Lévy assumption suggests that, subject to such support

qualifications, results like Theorem 1 can be derived under independent right-censoring.

We do not further explore this here.

The analysis of the independent competing-risks model is similar to that for inde-

pendently censored data. Consider two durations T 1 ≡ inf{t ≥ 0 : Y 1(t) > βX1 V
1} and

T 2 ≡ inf{t ≥ 0 : Y 2(t) > βX2 V
2}, with {Y 1} and {Y 2} spectrally-negative Lévy processes,

V 1 and V 2 positive random variables, β1 and β2 positive scalars, and X = {0, 1}. Suppose

that only the identified minimum of T 1 and T 2, (minj T
j, arg minj T

j), is observed. As-
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sume that {Y 1}, {Y 2}, V 1, V 2, and X are mutually independent so that, conditional on

X, T 1 and T 2 are independent with distributions given by two-sample MHT models. Let

T 1 and T 2 have unbounded supports; a sufficient condition for this is that {Y 1} and {Y 2}

have nondegenerate Brownian motion components. Then, the distributions of T 1|X and

T 2|X are uniquely determined from the distribution of (minj T
j, arg minj T

j) |X (Cox,

1962). Thus, Theorem 1 can be applied to the identification of the MHT triplets char-

acterizing both distributions. However, if one or both durations have bounded support,

then we face an identification problem similar to that with bounded censoring times.

4.5 Covariates and the Latent Process

Because the increments of the latent Lévy process are independent of its history, in par-

ticular its initial condition, an alternative model that specifies the initial condition Y (0)

to be heterogeneous, say equal to −φ(X)V , and fixes the threshold at a common value

of zero generates the same durations T . Similarly, we can redistribute a linear drift µt

from {Y } to the threshold, or rescale both with the same positive function of (X, V ),

without changing the implications for T . Thus, a choice between these alternative specifi-

cations cannot be based on the observed distribution of T |X, and should be motivated by

application-specific substantial considerations. Section 3’s structural examples illustrate

this.

With exclusion restrictions, it is possible to distinguish between the effects of covariates

on the latent process and their effects on the treshold. To illustrate this, we augment

Section 4.2’s two-sample framework with regressors that may affect both the latent process

and the threshold. To this end, suppose that X ≡ (Xφ, XΛ), with Xφ binary and XΛ

taking values in XΛ ⊆ Rk−1, so that X ≡ {0, 1} × XΛ. The threshold now depends on

both Xφ and XΛ, through φ(X). We assume that φ(0, XΛ) 6= φ(1, XΛ) with positive

probability. In addition, {Y } may depend on XΛ but, conditional on XΛ, not on Xφ.

To this end, we specify its parameters (µ, σ,Υ) as functions of XΛ, so that the Laplace
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exponent Λ(·, XΛ) of {T} depends on XΛ.

We ensure that XΛ cannot simply enter a scale factor in the Laplace exponent,

by requiring that Λ̃(s,XΛ)/Λ(s,XΛ) varies with s with positive probability whenever

Λ̃(·, XΛ) 6= Λ(·, XΛ) with positive probability. In the Gaussian case, for example, this

condition is satisfied if we allow the drift parameter to depend on XΛ, but take the dis-

persion parameter to be a positive scalar. It would be violated if we would allow the

dispersion parameter to depend on XΛ as well.

Take two MHT triplets (Λ, β,L) and (Λ̃, β̃, L̃) that imply the same distribution of T |X

almost surely. Assume that E[V · I(V < ∞)] < ∞ and normalize E[V · I(V < ∞)] = 1.

Then, Theorem 1, applied conditional on XΛ and on
{
φ(0, XΛ) 6= φ(1, XΛ)

}
, implies that

L̃ = L. In turn, this ensures that φ̃(X)Λ̃(·, XΛ) = φ(X)Λ(·, XΛ) almost surely. Because

this implies that Λ̃(s,XΛ)/Λ(s,XΛ) = φ(X)/φ̃(X) almost surely does not vary with s,

Λ(·, XΛ) = Λ̃(·, XΛ) almost surely. It follows that φ(X) = φ̃(X) almost surely.

4.6 Stratified Data

We can allow for general dependence of the latent process and the unobserved heterogene-

ity on the covariates if we have stratified data, with one shared value of V and observations

on two durations, T 1 and T 2, in each stratum. The two durations may concern a single

agent’s consecutive spells, or the single spells of two agents who are known to have the

same value of V . Formally, suppose we observe the joint distribution of (T 1, T 2); for now,

suppress covariates X. Let T 1 ≡ inf{t ≥ 0 : Y 1(t) > V } and T 2 ≡ inf{t ≥ 0 : Y 2(t) > V },

with {Y 1} and {Y 2} independent spectrally-negative Lévy processes; and V a positive

random variable, distributed independently from ({Y 1}, {Y 2}) with distribution G.

Denote the Laplace exponent of the hitting-time process corresponding to {Y j} with

Λj; j = 1, 2. Then, analogously to Section 4.1’s analysis for the single-spell case, it can
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be shown that

LT 1,T 2(s1, s2) ≡ E
[
I(T 1 <∞, T 2 <∞) exp

(
−s1T

1 − s2T
2
)]

= L [Λ1(s1) + Λ2(s2)] .

In the case without defecting movers; that is, Λ1(0) = Λ2(0) = 0; LT 1,T 2 fully charac-

terizes the distribution of (T 1, T 2). An expression similar to that for LT 1,T 2 appears in

Honoré’s (1993) analysis of the MPH model with multiple-spell data, for the joint survival

function of (T 1, T 2). In fact, in this special case, Honoré’s Theorem 1 applies directly:

Its proof applies to the case with stayers, even though it is stated for the nondefective

case. However, Honoré does not cover the general case in which possibly Λ1(0) > 0 and

Λ2(0) > 0. In this general case, there may be independent information about the marginal

distributions of T 1 and T 2, and in particular their defects, in the marginal transforms LT j

of T j; j = 1, 2; and we have to exploit this information to obtain identification. Moreover,

Lemma 1 does not apply here. So, the following result is of independent value.

Theorem 2 (Identifiability of the MHT Model from Stratified Data). If two two-

spell MHT triplets (Λ1,Λ2,L) and (Λ̃1, Λ̃2, L̃) imply the same joint distribution of (T 1, T 2);

then Λ̃1 = κΛ1, Λ̃2 = κΛ2, and L̃(κs) = L(s) for all s ∈ [0,∞), for some κ ∈ (0,∞).

Note that this identification result for stratified data, unlike Subsection 4.3’s results for

the single-spell case, does not require additional assumptions on Λ or G. Moreover, it

does not rely on external variation with covariates X. Thus, it also applies to a model

extended with covariates X that interact in an unrestricted way with {Y 1}, {Y 2}, and

V .

5 Estimation

So far, we have ignored sampling variation. This section briefly discusses estimation of

an MHT model, based on its characterization in Section 4.1, and standard moment and

likelihood methods.
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5.1 Parameterization

Let Λ, φ and L be specified up to a finite vector of unknown parameters α ∈ A. We assume

that this parameterization is one-to-one and implements one of Section 4.3’s identifying

conditions and two scale normalizations on (Λ, φ,L). Then, Theorem 1 applies with

κ = ρ = 1, and α is uniquely determined by the distribution of T |X. We also require

that the parameterization is sufficiently smooth to allow for the application of standard

asymptotic theory.

In the two-sample specification φ(x) = βx, we need that X = {0, 1}. In general, we

can specify φ(x) = exp(x′β) and make assumptions on the support X of X that ensure

that β is uniquely determined from x ∈ X 7→ exp(x′β). With continuous covariates, for

example, we could assume that X contains a nonempty open set in Rk.

The Lévy-Khintchine formula can be used to specify ψ; Λ then follows by inversion.

This ensures that Λ satisfies the model’s restrictions (see Section 4.1). We can generate

a smooth parameterization of Λ by using a version of the Lévy-Khintchine formula that,

unlike (4), employs a gradual distinction between small and large shocks. As we noted in

Section 4.1, this only affects the interpretation of the drift parameter µ. The Gaussian

special case offers an attractive baseline specification, with only the drift parameter µ and

dispersion parameter σ, and Υ = 0. In applications that require more flexibility, com-

pound Poisson shocks with a finitely discrete shock distribution can be added. Then, the

integral in the Lévy-Khintchine formula is a finite sum, so that the resulting specification

of ψ is easy to compute. Moreover, because the number of support points of the shock

distribution can be freely chosen, it is flexible. In fact, a formal reason to prefer this

specification over others is that each Lévy process can be approximated by a sequence of

compound Poisson processes (Feller, 1971, Section IX.5, Theorem 2).

The heterogeneity distribution G, and thus L, can be specified as in empirical ap-

plications of the MPH model. A finitely discrete specification is particularly popular

because of its versatility and computational convenience, and appears in Heckman and
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Singer’s (1984b) influential work on semiparametric estimation of the MPH model. Alter-

natively, a gamma specification of G combines naturally with the MHT model’s mixture-

of-exponentials specification of LT |X (Abbring and Van den Berg, 2007).

5.2 Sampling

For expositional convenience, we focus on a simple type of independent right-censoring

(Andersen et al., 1993). Let {(T ∗1 , X1), . . . , (T ∗n , Xn)} be a (complete) random sample

from the distribution of (T,X) induced by the MHT model at the “true” parameter

vector α0 ∈ A and some marginal distribution of X. We do not directly observe this

complete sample, but only a censored version of it: {(T1, D1, X1), . . . , (Tn, Dn, Xn)}. Here,

Ti ≡ min{T ∗i , Ci} is the observed duration and Di ≡ I(T ∗i ≤ Ci) a censoring indicator, for

some random censoring time Ci; i = 1, . . . , n. We assume that the complete observations

(T ∗i , Ci, Xi) are independent across i and that, conditional on Xi, Ci is independent of T ∗i .

That is, censoring times are not informative on the durations of interest.

We take the marginal distributions of the (Ci, Xi) to be ancillary for α, and focus on

estimating α0 using the conditional moment restrictions and likelihood implied by the

MHT model for T |X.

5.3 Generalized Method of Moments

Section 4.1’s characterization of the distribution of T |X in terms of its Laplace transform

provides a continuum of conditional moment conditions, one for each point s at which

the Laplace transform can be evaluated. This suggests a generalized method of moments

(GMM) estimator.

Define h(t, x; s, α) ≡ exp(−st)I(t <∞)−L [Λ(s)φ(x)]. Then, it follows from (6) that

E[h(T,X; s, α0)|X] = 0 almost surely, for all s ∈ (0,∞). In our estimation procedure, we

will specify an (m × 1)-vector Z of instruments based on X, and use the unconditional
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moment conditions

E[h(T,X; s, α0)Z] = 0, s ∈ [0,∞). (7)

The canonical example takes m = k+ 1 and Z ′ = [1 X ′], which gives k+ 1 unconditional

moment conditions, E[h(T,X; s, α0)] = 0 and E[h(T,X; s, α0)X] = 0, for each s. We

assume that the set of moment conditions (7) uniquely determines α0.

Suppose, for now, that there is no censoring, so that Ti = T ∗i for all i. We first construct

a consistent GMM estimator with naive weighting of the moments. This estimator is easy

to compute; it can serve as the first step in a more efficient two-step estimator, and may

be of interest in its own right. Denote the empirical analogue to the moment vector in

the left-hand side of (7) with

hn(s, α) ≡ n−1

n∑
i=1

h(Ti, Xi; s, α)Zi. (8)

We define a feasible (one-step) GMM estimator α̂n of α0 as the value of α that mini-

mizes the quadratic GMM objective function
∫∞

0
hn(s, α)′Qnhn(s, α)qn(ds). Here, Qn is a

positive-definite and symmetric m×m random matrix that converges in probability to a

positive-definite fixed matrix Q. For given s, the matrix Qn weighs the various moments

corresponding to the m instruments, with weights independent of s. Examples include

the m ×m identity matrix and (n−1
∑n

i=1 ZiZ
′
i)
−1

. The random probability measure qn

weighs the various moment conditions corresponding to the evaluation points s of the

Laplace transform, identically across the instruments in Zi. It has support in [0,∞) and

converges to a nonrandom measure q. It could be finitely discrete, and selecting only a

finite number of Laplace evaluation points, or absolutely continuous. Examples of the

latter include qn(s) = exp(−$ns) for either a fixed or a data-dependent positive $n.

The analysis of Carrasco and Florens (2000) can be adapted to prove that, under

appropriate regularity conditions, α̂n is
√
n-consistent and asymptotically normal. More-
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over, Carrasco and Florens’s (2002) method for efficient estimation based on empirical

characteristic functions can be adapted to produce an GMM estimator of the MHT model

that efficiently weighs across evaluation points of LT |X , for given finite instrument vector

Z. This estimator is a two-step estimator that uses α̂n as a first-stage estimator. A full

development is left for Abbring and Salimans (2011a).

In the two-sample case or, more generally, the case that the support X of X is finite,

the GMM estimator can be readily adapted to allow for independent censoring, by non-

parametrically correcting the empirical moments in (8) for censoring. To this end, first

estimate the distribution of T in each sample using the Nelson-Aalen estimator or, in the

special case of simple random right-censoring, the Kaplan-Meier estimator (see e.g. An-

dersen et al., 1993, Section IV.1). Then, compute the empirical analogue of the moment

condition (7) using these nonparametric estimators of the distribution of T ; instead of

the empirical distribution function, as in (8). Provided that the censoring mechanism is

such that the distribution of T |X is identified in each sample, its nonparametric estimator

is consistent and asymptotically Gaussian, and the properties of the censoring-corrected

GMM estimator can be derived in a standard manner.

In the case that φ(x) = exp(x′β), with X general, we cannot rely on repeated appli-

cation of the Nelson-Aalen estimator to each sample. Instead, we need a semiparametric

estimator of the distribution of T |X to compute the empirical analogue of the moment

condition (7). In these cases, likelihood-based methods are a convenient alternative to

GMM estimation.

5.4 Likelihood-Based Methods

The log (conditional) likelihood lnLn(α) of α for (T1, . . . , Tn)| {(D1, X1), . . . , (Dn, Xn)} is

given by

lnLn(α) =
n∑
i=1

ln

∫
θ(Ti|Xi, v)DiF (Ti|Xi, v)dG(v), (9)
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with θ(·|X, V ) and F (·|X, V ) the hazard rate and survival function of T |X, V . Here, the

dependence of θ and F (through Λ and φ) and G on the parameter vector α is kept

implicit.

Under standard regularity conditions, the maximizer α̂n of lnLn(α) is a consistent and

asymptotically normal estimator of α0. The estimator’s asymptotic covariance matrix can

be estimated in the standard way using either the score or Hessian characterization of the

Fisher information matrix. It is asymptotically efficient under the assumption that the

marginal distribution of X and the censoring times carry no information on α0.

In the Gaussian special case; T |X, V has an inverse Gaussian distribution, and we

have explicit expressions for θ(Ti|Xi, v) and F (Ti|Xi, v) in (9). In the general case with

shocks, such explicit expressions are not available, and the likelihood cannot be computed

directly. Abbring and Salimans (2011b) however show that the log likelihood can, in

general, be efficiently computed with numerical methods for inverting Laplace transforms

that exploit special properties of the first hitting times of Lévy processes. This enables the

computation of the maximum likelihood estimator and facilitates other likelihood-based

methods.

6 Extensions

This section discusses three important extensions that are beyond the scope of this paper.

6.1 Time-Varying Covariates

Following most of the duration-model identification literature, we have ignored time-

varying covariates. It is well known that time variation in observed covariates can be

exploited to relax some of the more controversial identifying assumptions for the MPH

model, such as Elbers and Ridder’s (1982) finite-mean assumption (see e.g. Heckman and

Taber, 1994). From this perspective, the case of time-invariant covariates, and in fact a
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single binary one, can be seen as informing us what can be learned with minimal covariate

variation. Additional time-variation in the covariates can only aid identification, as with

the MPH model.

Specifically, time-varying covariates can be introduced in the MHT model as determi-

nants of a time-varying threshold or, following Section 4.5’s extension, the latent process

{Y }. For example, in a structural model, time-varying covariates may directly shift the

drift parameter of the latent process and indirectly affect the threshold through the agent’s

behavioral response. If the support of the covariate process includes constant sample paths

then, under some regularity conditions, this paper’s identification results can be applied.

A drawback of a model with time-varying parameters is that it is hard to characterize

its hitting-time process. As a consequence, we cannot directly exploit the time-varying

covariates to derive more powerful identification results, as in the MPH literature. More-

over, the model may be hard to implement empirically. This suggests that we alternatively

treat time-varying covariates as noisy measurements of the latent state process, as in Ab-

bring and Campbell’s (2005) discrete-time model of industry dynamics. This complicates

the analysis with a filtering problem, but respects much of the current model’s structure.

6.2 Nonstationary Increments

Aalen and Gjessing (2001) show that hitting-time models based on Brownian motions with

drift towards the threshold exhibit quasi-stationarity: The distribution of Y (t)|(T ≥ t)

converges to a gamma distribution and hazard rates corresponding to different thresholds

converge to a common limit as time t increases. This both suggests that the MHT model

may be too restrictive in some applications and that models with richer time effects may

be identifiable. One such model specifies T ≡ ξ(T ∗), for an increasing time transformation

ξ : [0,∞]→ [0,∞] and the distribution of T ∗|X given by the MHT model. If ξ is linear,

this simply gives the MHT model for T |X; any nonlinearities correspond to additional

duration dependence.
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One structural source of nonstationarity that may be captured this way is Bayesian

learning, as in Jovanovic’s (1979; 1984) model of job tenure. Lancaster (1990, Section

6.5) suggests that we approximate job tenure T predicted by Jovanovic’s theory by ξ(T ∗),

with

ξ(t∗) ≡


η2t∗

1−ηt∗ if t∗ ∈ [0, η−1) and

∞ if t∗ ∈ [η−1,∞].

Here, T ∗ is the first time a Brownian motion crosses a threshold that decreases linearly

from a positive initial value, which is equivalent to the first time a Brownian motion

with upward drift crosses a positive threshold. The probability Pr(T ∗ ≥ η−1) equals the

defect Pr(T = ∞) that arises because some agents will eventually learn that they are

in a good match and never leave it. We can extend this framework to include observed

and unobserved covariates by replacing the marginal specification of T ∗ by a Gaussian

MHT model for the distribution of T ∗|X. The resulting model is a simple, one-parameter

extension of the MHT model that allows for nonstationary increments.

6.3 Generalized Ornstein-Uhlenbeck Processes

Lévy processes are a key component in many process-based duration models in econo-

metrics and statistics. Another frequent choice is the Ornstein-Uhlenbeck process (e.g.

Aalen and Gjessing, 2004). This process allows for mean reversion and may be more

appropriate in some applications. A specification for {Y } that includes both as special

cases is the Ornstein-Uhlenbeck process driven by a Lévy process. Such a process satis-

fies dY (t) = −%Y (t)dt + dY ∗(t), with % ∈ [0,∞) and {Y ∗} a Lévy process. The usual

Ornstein-Uhlenbeck process arises if {Y ∗} is a Brownian motion and % > 0. We explicitly

include the boundary case % = 0, in which {Y } is a Lévy process.

The Laplace transform of the distribution of T |X in an MHT model generalized this

way can be derived from Novikov (2004), who provides explicit expressions for the Laplace
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transform of the hitting-time distribution of an Ornstein-Uhlenbeck process driven by a

spectrally-negative Lévy process. However, even though the generalized model adds only

one parameter, %, Novikov’s results suggest that an analysis of its identifiability requires

more than just a simple variation of the present paper’s analysis.

7 Conclusion

This paper’s main contribution is to provide fundamental insight in the empirical content

of a framework for econometric duration analysis, the MHT model, that is connected to

an important class of dynamic economic models with heterogeneous agents. It does so by

highlighting and exploiting a close analogy between the identification analysis of the MHT

model and that of the MPH model. This way, it extends the applicability of the MPH

identification literature to a new, and structurally important, class of duration models.

The analogy between the analysis of the MHT and the MPH models should not be

mistaken for a structural similarity between both frameworks. In the MPH model, the

(mixed) exponential form arises from the exponential formula for the survival function. In

the MHT model, it arises from the infinite divisibility of the law characterizing the latent

Lévy process {Y }, which, with the assumption that {Y } is spectrally negative, ensures

that the hitting times T (y) are infinitely divisible.

In fact, as we have noted in the introduction and illustrated with Figure 2, MHT haz-

ard rates are generally not multiplicative in the effects of time and those of heterogeneity.

This implies that the empirical analysis of data generated by the MHT model with an

MPH framework will generally produce invalid structural conclusions. For example, con-

sider the MHT model with Y (t) = µt, and V distributed as a mixture of exponentials:

Pr(V > v) =
∫∞

0
exp(−wv)dG∗(w), for some distribution G∗. This MHT triplet can-

not be statistically distinguished from an MPH model with a constant baseline hazard

and an unobserved heterogeneity factor with distribution G∗; both imply a mixture-of-

exponentials specification of T |X. However, the MHT specification assigns all variation

38



between individuals to time-invariant unobserved heterogeneity; the MPH specification

instead interprets part of the cross-sectional variation as driven by idiosyncratic, time-

homogeneous Poisson shocks. This strongly motivates the use of the MHT model when

the MHT structure holds, for example in applications to optimal stopping problems of

the type discussed in Section 3.

Of course, the same considerations should lead one to prefer an MPH model when an

MPH structure holds. Hazard models are particularly natural in applications to decisions

that are taken at Poisson times, such as sequential job search or insurance claim decisions.

In some cases, hazards may also be the easiest way to specify the hitting-time process

implied by a latent process that jumps across the threshold; see e.g. Section 3.2’s discus-

sion of employment durations. The fact that the resulting hazard rates are usually not

multiplicative in the effects of elapsed duration and those of heterogeneity (Van den Berg,

2001) may cast doubt on the structural applicability of the MPH model, but calls for the

use of specific nonproportional hazard models, rather than this paper’s MHT model. The

fact that Section 3.3’s search-matching model combines a hazard model for job search

with a hitting-time model for job tenure exemplifies the complementary nature of the

hitting-time and hazard approaches to duration analysis.

There may also be statistical reasons to prefer one framework over the other. Both

the MHT and the MPH models are rich descriptive frameworks, which can perfectly

fit any duration distribution for a single given value of the observed covariates. They do

however impose restrictions on the variation of durations with covariates. To some extent,

these restrictions are the same in both models: The mixture-of-exponentials example

shows that they contain nontrivial subclasses of observationally equivalent specifications.

However, it is easy to show, by counterexample, that the MHT and MPH models are not

observationally equivalent in general. Consider again the MHT model with Y (t) = µt, but

now with V concentrated on a strict subset of (0,∞), such as (0, 1). Then, the implied

support of T |X varies with the covariates X. The MPH model cannot reproduce this
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statistical implication, because it can only generate gaps in the support of T |X through

the baseline hazard, which is common across covariate values X.

An attractive feature of the MHT model is that it includes the AFT model as a special

case. In fact, this section’s examples with Y (t) = µt are both special cases of this standard

model from statistics. As discussed in Section 2.3, the AFT model can be interpreted

as a boundary specification of the MHT model in which all variation in durations is

due to ex ante heterogeneity. More generally, the hitting-time structure, with the Lévy

assumption on the latent process, tightly specifies agent-level time effects as potentially

endogenous outcomes; whereas the MPH model offers direct control over such effects,

through the baseline hazard. This tight specification of agent-level dynamics, in terms of

a latent process that can be an optimal stopping problem’s state and a threshold rule that

naturally follows as its optimal decision rule, is key to the MHT model’s close relation with

economic theory. It does however complicate the introduction of time-varying covariates;

which, at least from a statistical perspective, can be straightforwardly introduced into a

hazard model. Section 6.1 proposes that we either extend the MHT model by including

time-varying covariates in its primitives or respect its basic structure by introducing time-

varying covariates as noisy measurements of the latent state. The further development of

a theory-based and computationally feasible way to introduce time-varying covariates in

the MHT model is a key next step in its analysis.
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Appendix

A Extending the Support of the Threshold

If we extend the support of G to [0,∞], the model allows for an unobserved subpopulation

{V = 0} of agents using a zero threshold. On this subpopulation, T = T (0) = 0 almost

surely, that is Pr(T = 0, V = 0) = Pr(V = 0), because {Y } visits (0,∞) at arbitrarily

small times almost surely (Bertoin, 1996, Theorem VII.1).

The case in which V , and therefore T , has a mass point at 0 may be of interest in

some applications; but even then, data on immediate transitions may not be available. In

applications in which a mass at 0 is indeed relevant, the analysis in the main text applies

to the distribution of V |V > 0 and all other model components. If data on immediate

transitions are available, in addition Pr(V = 0) can be identified with Pr(T = 0). Thus,

our focus on the case in which Pr(V = 0) = 0 is without loss of generality.

We could also extend the model by allowing for an observed subpopulation with a zero

threshold, by including 0 in the range of φ. Similarly, we could allow for observed stayers

by including ∞ in the range of φ. Because such subpopulations can be trivially identified

from complete data, these extensions are of little interest for the purpose of this paper.

B Proofs

Denote Lx(·) ≡ LT (·|X = x) and note that F0 and F1 uniquely determine L0 and L1.

Proof of Lemma 1. Without loss of generality, let L(0) ≤ L̃(0); and suppose that L0 ≤ L1,

so that β < 1 and β̃ < 1.

Observational equivalence implies that L ◦ (βL−1) = L1 ◦ (L−1
0 ) = L̃ ◦ (β̃L̃−1) on

(0,L0(0)), where ◦ denotes function composition. Moreover, by the real analyticity of

the Laplace transform (Widder, 1946, Chapter IV, Theorem 3a), the real analytic inverse

function theorem (Krantz and Parks, 2002, Theorem 1.5.3), and the real analyticity of
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compositions of real analytic functions (Krantz and Parks, 2002, Proposition 1.4.2); L ◦

(βL−1) and L̃ ◦ (β̃L̃−1) are real analytic on (0,L(0)) (see also Kortram et al., 1995, for an

alternative, complex analytic approach). Taken together with L0(0) > 0, using analytic

extension (based on e.g. Krantz and Parks, 2002, Corollary 1.2.6), this implies that

L ◦ (βL−1) = L̃ ◦ (β̃L̃−1) on (0,L(0)). (10)

Note that both sides of (10) map (0,L(0)) into itself. Thus, we can compose each side l

times with itself, and find that

L ◦ (βlL−1) = L̃ ◦ (β̃lL̃−1) on (0,L(0)), l ∈ N. (11)

Because L and L̃ are continuous at 0; evaluating both sides of (11) at a fixed s ∈ (0,L(0)),

and letting l→∞, gives L(0) = L̃(0).

Proof of Theorem 1. We first show that the claimed result holds for some ρ ∈ (0,∞) in

each of the regularity condition’s four possible cases, and then prove that it holds with

1/2 ≤ ρ ≤ 2.

Without loss of generality, suppose that L0 ≤ L1, so that β < 1 and β̃ < 1.

(R1). Suppose that |L′| and |L̃′| vary regularly at 0, with exponents τ, τ̃ ∈ (−1, 0].

By Lemma 1, L(0) = L̃(0). With (11), this implies that L(0) − L ◦ (βlL−1) =

L̃(0)− L̃ ◦ (β̃lL̃−1) on (0,L(0)), l ∈ N. Taking logs, and then derivatives, yields

K′(s)
K(s)

(
βlK(s)L′

[
βlK(s)

]
L(0)− L [βlK(s)]

)
=
K̃′(s)
K̃(s)

 β̃lK̃(s)L̃′
[
β̃lK̃(s)

]
L̃(0)− L̃

[
β̃lK̃(s)

]


for all s ∈ (0,L(0)) and l ∈ N, with K ≡ L−1 and K̃ ≡ L̃−1. Rearranging gives

K̃′(s)/K̃(s)

K′(s)/K(s)
=

βlK(s)
∣∣L′ [βlK(s)

]∣∣ /{L(0)− L
[
βlK(s)

]}
β̃lK̃(s)

∣∣∣L̃′ [β̃lK̃(s)
]∣∣∣ /{L̃(0)− L̃

[
β̃lK̃(s)

]} , (12)
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for s ∈ (0,L(0)) and l ∈ N. By Feller (1971, Section VIII.9, Theorem 1(a)); the

numerator in the right-hand side of (12) converges to τ + 1 ∈ (0, 1], and the de-

nominator to τ̃ + 1 ∈ (0, 1]; for each given s ∈ (0,L(0)), as l → ∞. Consequently,

K̃′/K̃ = ρK′/K on (0,L(0)), where ρ ≡ (τ + 1)/(τ̃ + 1) ∈ (0,∞). In turn, this

implies K̃ = κKρ on (0,L(0)), for some arbitrary κ ∈ (0,∞). Using the definitions

of K and K̃, this gives L̃(κsρ) = L(s) for all s. Finally, from L ◦ Λ = L̃ ◦ Λ̃, we get

Λ̃ = κΛρ; and with L ◦ (βΛ) = L̃ ◦ (βΛ̃), we find that β̃ = βρ.

(R2). Suppose that |L′| and |L̃′| vary regularly at ∞, with exponents τ, τ̃ ∈ (−∞,−1).

Observational equivalence implies that L ◦ (β−1L−1) = L0 ◦ (L−1
1 ) = L̃ ◦ (β̃−1L̃−1)

on (0,L1(0)). As in Lemma 1’s proof, this gives L ◦ (β−lL−1) = L̃ ◦ (β̃−lL̃−1) on

(0,L(0)), l ∈ N. Taking logs and derivatives, and rearranging, yields

K̃′(s)/K̃(s)

K′(s)/K(s)
=

β−lK(s)
∣∣L′ [β−lK(s)

]∣∣ /{L [β−lK(s)
]}

β̃−lK̃(s)
∣∣∣L̃′ [β̃−lK̃(s)

]∣∣∣ /{L̃ [β̃−lK̃(s)
]} , (13)

for all s ∈ (0,L(0)). By Feller (1971, Section VIII.9, Theorem 1(a)); the numerator

in the right-hand side of (13) converges to −(τ + 1) ∈ (0,∞) and the denominator

to −(τ̃+1) ∈ (0,∞), so that the right-hand side again converges to ρ ≡ (τ+1)/(τ̃+

1) ∈ (0,∞); for each given s ∈ (0,L(0)), as l → ∞. As in Case (R1), this gives

L̃(κsρ) = L(s) for all s, Λ̃ = κΛρ, and β̃ = βρ.

(R3). Suppose that |ψ′| and |ψ̃′| vary regularly at 0, with exponents τ, τ̃ ∈ (−1, 1].

Observational equivalence implies that ψ◦(βΛ) = L−1
0 ◦L1 = ψ̃◦(β̃Λ̃) on (s,∞), with

s ≡ L−1
1 [L0(0)] = ψ [β−1Λ(0)] = ψ̃

[
β̃−1Λ̃(0)

]
. Recall that ψ(0) = ψ [Λ(0)] = 0 and

lims→∞ ψ(s) =∞, and note that ψ is either strictly increasing or strictly convex (or

both). Consequently, ψ attains a unique minimum at some Λmin ∈ [0,Λ(0)]. Denote

this minimum with smin ∈ (−∞, 0]. Note that the inverse of the restriction of ψ to

[Λmin,∞) ⊇ [Λ(0),∞) exists. Extend Λ from [0,∞) to [smin,∞) so that it equals
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this inverse. Similarly, denote the unique minimum of ψ̃ with s̃min ∈ (−∞, 0] and

extend Λ̃ to [s̃min,∞). Without loss of generality, suppose that smin ≥ s̃min. Because

ψ and ψ̃ are real analytic (Bertoin, 1996, Section VII.1), Λ and Λ̃ are real analytic

on (smin,∞) by the real analytic inverse function theorem, and compositions of

real analytic functions are real analytic; ψ ◦ (βΛ) and ψ̃ ◦ (β̃Λ̃) are real analytic on

(smin,∞). With s <∞, using analytic extension, this implies that

ψ ◦ (βΛ) = ψ̃ ◦ (β̃Λ̃) on (smin,∞). (14)

Note that both sides of (14) map (smin,∞) into itself. Thus, we can compose each

side l times with itself, which gives ψ ◦ (βlΛ) = ψ̃ ◦ (β̃lΛ̃) on (smin,∞), l ∈ N.

Applying calculations that parallel those for Cases (R1) and (R2), we find that

Λ̃′(s)/Λ̃(s)

Λ′(s)/Λ(s)
=
βlΛ(s)

∣∣ψ′ [βlΛ(s)
]∣∣ /ψ [βlΛ(s)

]
β̃lΛ̃(s)

∣∣∣ψ̃′ [β̃lΛ̃(s)
]∣∣∣ /ψ̃ [β̃lΛ̃(s)

] , (15)

for all s ∈ (0,∞) ⊆ (smin,∞) and l ∈ N. Feller (1971, Section VIII.9, Theorem 1(a))

implies that the right-hand side of (15) converges to ρ ≡ (τ + 1)/(τ̃ + 1) ∈ (0,∞);

for each given s ∈ (0,∞), as l → ∞. With continuity of Λ and Λ̃ at 0, this gives

Λ̃ = κΛρ, for some arbitrary κ ∈ (0,∞). With observational equivalence, and using

analytic extension, it follows that L̃(κsρ) = L(s) for all s, and that β̃ = βρ.

(R4). Suppose that |ψ′| and |ψ̃′| vary regularly at ∞, with exponents τ, τ̃ ∈ [0, 1].

Observational equivalence implies that ψ ◦ (β−1Λ) = L−1
1 ◦ L0 = ψ̃ ◦ (β̃−1Λ̃) on

(0,∞). Analogously to the analysis for Case (R3), this can be used to show that

(15) extends from l ∈ N to all l ∈ Z. Feller (1971, Section VIII.9, Theorem 1(b))

implies that the right-hand side of (15) converges to ρ ≡ (τ + 1)/(τ̃ + 1) ∈ [1/2, 2];

for each given s ∈ (0,∞), as l → −∞. Consequently, the conclusion of Case (R3)

extends to this case, but with ρ ∈ [1/2, 2].
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At least one of these four cases holds by assumption; so their common conclusion that

β̃ = βρ, Λ̃ = κΛρ, and L̃(κsρ) = L(s) for all s; for some κ ∈ (0,∞) and ρ ∈ (0,∞); holds.

Remains to show that Case (R4)’s tighter bound on ρ holds generally. To this end, note

that both ψ and ψ̃ should satisfy the Lévy-Khintchine formula (4). Because ψ is convex

and ψ(s) → ∞ as s → ∞ (Bertoin, 1996, Section VII.1), s−1ψ(s) either converges to a

strictly positive constant or diverges to ∞ as s → ∞. Moreover, s−2ψ(s) → σ2/2 < ∞

(Bertoin, 1996, Proposition I.2). Obviously, the same asymptotic behavior is displayed

by ψ̃. From ψ [Λ(s)] = s = ψ̃
[
Λ̃(s)

]
, it follows that ψ̃(s) = ψ

[
(s/κ)1/ρ

]
, s ∈ [Λ̃(0),∞).

Therefore, if ρ > 2, then lims→∞ s
−1ψ̃(s) = lims→∞ κ

−1s−ρψ(s) = 0. Consequently, ρ ≤ 2

and, by symmetry, ρ ≥ 1/2.

Proof of Theorem 2. Denote Lj ≡ LT j and L12 ≡ LT 1,T 2 ; and note that L1, L2 and L12

are uniquely determined by the distribution of (T 1, T 2). Denote Λ12(s) ≡ Λ1(s) + Λ2(s),

s ∈ [0,∞).

Observational equivalence implies that

Λ′1(s1)

Λ′2(s2)
=
∂L12(s1, s2)/∂s1

∂L12(s1, s2)/∂s2

=
Λ̃′1(s1)

Λ̃′2(s2)
, (s1, s2) ∈ (0,∞)2.

Consequently,

Λ̃j − Λ̃j(0) = κ [Λj − Λj(0)] ; j = 1, 2; (16)

for some κ ∈ (0,∞). Analogously to Honoré’s (1993) proof of his Theorem 1, this would

provide identification up to scale if we would know that Λj(0) = Λ̃j(0) = 0; j = 1, 2.

However, at this point, Λj(0) and Λ̃j(0); j = 1, 2; are not yet determined; and (16) only

identifies the Laplace exponents up to location and the common scale factor κ.

To resolve this problem, note that observational equivalence also implies that

Λ−1
j ◦ Λ12 = (Lj)−1 ◦ L12 = Λ̃−1

j ◦ Λ̃12 on [0,∞); j = 1, 2. (17)
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Substituting (17) in (16) gives

Λ̃12 − Λ̃j(0) = κ [Λ12 − Λj(0)] ; j = 1, 2. (18)

Moreover, (16) implies that

Λ̃12 − Λ̃1(0)− Λ̃2(0) = κ [Λ12 − Λ1(0)− Λ2(0)] . (19)

Together, (18) and (19) imply that Λ̃j(0) = κΛj(0); j = 1, 2. With (16), this gives

Λ̃j = κΛj; j = 1, 2.

Finally, observational equivalence implies that L̃(κs) = L(s), s ∈ (minj Λj(0),∞).

Because minj Λj(0) < ∞, this equality analytically extends to all s ∈ (0,∞). Finally,

because L and L̃ are continuous at 0, we have that L(0) = L̃(0).
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Honoré, B. E. (1993). Identification results for duration models with multiple spells.

Review of Economic Studies 60, 241–246. 30, 45

Jovanovic, B. (1979). Job matching and the theory of turnover. Journal of Political

Economy 87, 972–990. 3, 37

Jovanovic, B. (1984). Matching, turnover, and unemployment. Journal of Political Econ-

omy 92, 108–122. 3, 37

49



Kortram, R., A. Lenstra, G. Ridder, and A. van Rooij (1995). Constructive identification

of the mixed proportional hazards model. Statistica Neerlandica 49, 269–281. 42

Krantz, S. G. and H. R. Parks (2002). A Primer of Real Analytic Functions (Second ed.).
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